ON THE OSCILLATORY AND ROTATIONAL RESONANT MOTIONS

PMM Vol. 32, No. 2, 1968, pp. 306-313

L.D. AKULENKO
(Moscow)

(Received March 29, 1967)

In this paper we investigate the rotational and oscillatory solutions of perturbed, essentially nonlinear systems with several degrees of freedom. Using the method of small parameter we construct steady resonant solutions and apply the first Liapunov method to derive the sufficient conditions of their asymptotic stability. An example from nonlinear mechanics is solved to illustrate the proposed method. Analogous results were obtained earlier for the particular case of almost conservative systems with one degree of freedom. The system investigated in this paper represents a generalization of Liapunov and similar systems.

1. Statement of the problem. Let us consider a real system with a small parameter

$$
\begin{equation*}
d x_{i} / d l=F_{i}\left(x_{1}, \ldots, x_{n}\right)+\varepsilon_{J_{i}}\left(t, x_{1}, \ldots, x_{n}, \varepsilon\right) \quad(i=1, \ldots, n) \tag{1.1}
\end{equation*}
$$

for which the following generating self-contained system

$$
\begin{equation*}
d x_{i}^{0} / d t=F_{i}\left(x_{1}{ }^{\circ}, \ldots, x_{n}^{0}\right) \equiv F_{i 0} \tag{1.2}
\end{equation*}
$$

admits a stable, two-parameter family of rotational - oscillatory solutions of the type [1]

$$
\begin{gathered}
x_{i}^{0}=\delta_{i}\left(T_{i} / 2 \tau\right) \omega(E)\left(t-t_{0}-\tau\right)+\varphi_{i}\left(\omega(E)\left(t-t_{0}+\tau\right), E\right) \\
\delta_{i}=1 \quad(i \leqslant p) \quad \delta_{i}=0 \quad(i>p, p \leqslant n)
\end{gathered}
$$

When the system is purely oscillatory, we have $p=0$, i.e. $x_{i}{ }^{\circ}=\phi_{1}$, where ϕ_{i} are 2π * periodic functions of the phase $\psi=\omega(E)\left(t-t_{0}+T\right) ; T_{i}$ denote the constant periods of the functiona F_{1} and f_{1} in rotating coordinates; $\omega=\omega(E)$ is the natural frequency; τ is the phase constant and E is the second parameter of the family.

We can obtain (1.1) in a more suitable form using the following transformation [2 and 3]

$$
\begin{equation*}
x_{i}:=x_{i}^{0}(\psi, E)+\frac{1}{2} \sum_{k=3}^{n}\left[A_{i . i}(\psi, E) h_{k}+\bar{A}_{i / i}\left(\psi, E ; \bar{h}_{i .}\right]\right. \tag{1.3}
\end{equation*}
$$

Here $\left(A_{f k}\right)$ is an $n \times(n-2)$-matrix which is, generally speaking, complex (a bar denotes a complex conjugate). This matrix also appears in the following nonsingular substitution

$$
y_{i}=-\frac{\partial x_{i}^{\circ}}{\partial \tau} u_{1}+\frac{\partial x_{i}^{\circ}}{\partial E} u_{2}+\sum_{i=3}^{n} A_{i k}(\psi, E) u_{k}
$$

which reduces the system of nonperturbed equations written in variational furm

$$
\begin{equation*}
\frac{d y_{i}}{d t}=\sum_{k=1}^{n}\left(\frac{\partial F_{i}}{\partial x_{i}}\right)_{0} y_{k} \quad(i=1, \ldots, n) \tag{1.4}
\end{equation*}
$$

to a system with constant coefficients of the form

$$
\frac{d u_{1}}{d t}=\omega^{\prime}(E) u_{z i} \quad \frac{d u_{3}}{d t}=0, \quad \frac{d u_{j}}{d t}=\sum_{k=3}^{n} H_{j: i}(E) u_{k} \quad(j=3, \ldots, n)
$$

in which the roots of the characteristic Eq.

$$
\Delta(\rho)=\left|H_{j k}-\delta_{j k} \rho\right|=0 \quad(j, k=3, \ldots, n)
$$

will also play the part of characteristic indices for the variational system (1.4), whose variations have negative real parts (the remaining two are equal to zero). As a result we obtain the following system

$$
\begin{equation*}
\frac{d E}{d t}=f(t, E, \psi, h, \varepsilon), \quad \frac{d \psi}{d t}=\omega(E)+F(t, E, \psi, h, \varepsilon), \quad \frac{d h}{d t}=H(E) h+g(t, E, \psi, h, \varepsilon) \tag{1.5}
\end{equation*}
$$

Here h is the $(n-2)$-dimensional vector and $H(E)$ is the $(n-2) \times(n-2)$-stable matrix, both of them are complex quantities. Functions f, ω, F and g are real for real E, ψ and ε and complex h, are θ-periodic in t and 2 , periodic in ψ, both periods being constant (θ denotes the period of f_{i} in t). Further, the following estimates hold for the functions, f, F and g when $|c|$ and $\mid h_{1}$ are sufficiently small:

At $\varepsilon=0$ and $h=0$ these inequalities yield the following identities

$$
(f, F, g)=0, \quad \frac{\partial^{r+s}(f, F, g)}{\partial \psi^{r} \partial F^{s}} \equiv 0, \quad \frac{\partial^{r+:}(f, F, g)}{\partial h \partial \psi^{r} \partial E^{s}} \equiv 0 \quad(r, s \geqslant 1)
$$

provided that f, F and g are differentiable the required number of times.
In this paper we develop a direct method of constructing steady resonant solutions of the system (1.5) for all $t \notin\left[t_{0}, \infty\right.$). Unlike the existing averaging schemes [1 and 2] our method of small parameter enables us to follow the behavior of the perturbed system in the limit as $t \rightarrow \infty$. To put it more accurately, our scheme yields the sufficient conditions for the occurrence of the steady, resonant modes. When studying the Liapunov stability of these modes, we find that we are able to follow the development of other similar type modes at the initial time. This throws light on the importance of the study of the Liapunov stability of a perturbed motion. We note that the unperturbed motion is unstable and, that we have a critical case in which one group of solutions corresponds to a double characteristic index equal to zero.

2. Construction of the steady resonant solution of the system.

The solution will be a resonant one of the form m / l, if

$$
\omega\left(E_{0}^{*}\right) / v=1 / m \quad(\nu=2 \pi / 0)
$$

where m and l are integers in some simple ratio. If the functions f, ω, F, H and g are analytic in some region

$$
|\varepsilon| \leqslant \varepsilon_{0}, \quad\left|E \cdots E_{0}\right| \leqslant \alpha, \quad|\operatorname{Im} \psi| \leqslant \beta, \quad|h| \leqslant \sigma
$$

then the solution should be sought $[4]$ in the form of series

$$
\begin{equation*}
E=E_{0} *+\sum_{i=1}^{\infty} \varepsilon^{i} E_{i}, \quad \psi==\frac{l}{m} v\left(\ell-1_{0}\right)-1 \quad \tau+\sum_{i=1}^{\infty} \varepsilon^{i} \psi_{i}, \quad h=\sum_{i=1}^{\infty} \varepsilon_{i}^{i} h_{i} \tag{2.1}
\end{equation*}
$$

in which E_{1}, ψ_{i} and $h_{i}(i \geq 1)$ are ($T=m \theta$)-periodic. Using the estimates (1.6) we find, that the functions

$$
E=E_{0}^{*}, \quad \psi=l / m v\left(t-t_{0}\right)+\tau, \quad h=0
$$

will be a solution of (1.5) when $\varepsilon=0$. Inserting the series (2.1) into (1.5) and comparing the coefficients of like powers of ε, we obtain an infinite sequence of interrelated systems for E_{i}, ψ_{1} and h_{i} and in particular, the following system for the first increments

$$
\frac{d E_{1}}{d t}=\left(\frac{\partial f}{\partial \varepsilon}\right)_{0^{\circ}} \quad \frac{d \psi_{1}}{d t}=\omega_{0}^{\prime} E_{1}+\left(\frac{\partial F}{\partial e}\right)_{0^{\prime}}, \quad \frac{d h_{1}}{d t}=H_{0} h_{1}+\left(\frac{\partial g}{\partial \varepsilon}\right)_{0}
$$

Here the subscript 0 at the relevant expressions in brackets, mean that they are taken for the generation solution and for $\varepsilon=0$. The first elementary equation yields

$$
E_{1}=\int_{i_{0}}^{t}\left(\frac{\partial f}{\partial \varepsilon}\right)_{0} d l_{1}+A_{1} \quad\left(A_{1}=\text { const }\right)
$$

From the above argument it follows that E_{1} will be periodic function, if the phase constant satisfies

$$
\begin{equation*}
P(\tau)=\int_{0}^{T}\left(\frac{\partial f}{\partial \varepsilon}\right)_{0} d t=0 \quad\left(\operatorname{Im} \tau^{*}=0\right) \tag{2.2}
\end{equation*}
$$

This condition is necessary and sufficient under the constraints imposed on the function f and other quantities. We shall call (2.2) the condition of phase equilibrium. Later we shall see that the condition of periodicity together with other similar conditions have the decisive role in our investigation, since they will be used for elimination the secular terms.

We find the function ψ_{1} in the similar manner

$$
\psi_{1}=\omega_{0}^{\prime} A_{1}\left(t-t_{0}\right)+\int_{t_{0}}^{t}\left[\omega_{0}^{\prime} \int_{t_{0}}^{t_{1}}\left(\frac{\partial f}{\partial \varepsilon}\right)_{0} d t_{2}+\left(\frac{\partial F}{\partial \varepsilon}\right)_{0}\right] d t_{1}+B_{1}
$$

Condition of periodicity together with the condition that $\omega^{\prime}\left(E_{0}{ }^{*}\right) \neq 0$, yield the value of the constant A_{1}

$$
A_{2}^{*}=-\left(\omega_{0}^{\prime} T\right)^{-1} \int_{0}^{T}\left[\omega_{0} \int_{t_{0}}^{t}\left(\frac{\partial j}{\partial \varepsilon}\right)_{0} d t_{1}+\left(\frac{\partial F}{\partial \varepsilon}\right)_{0}\right] d t
$$

This defines the periodic functions E_{1} and h_{1} completely

$$
E_{1}=\int_{t_{0}}^{t}\left(\frac{\partial t}{\partial \varepsilon}\right)_{0} d t_{1}+A_{1}^{*}, \quad h_{1}=\int_{-\infty}^{t} e^{H_{0}\left(t-t_{1}\right)}\left(\frac{\partial g}{\partial \varepsilon}\right)_{0} d t_{1}
$$

while ψ_{1} is defined with accuracy of up to the constant B_{1}.
Equations for second increments yield

$$
E_{2}=B_{1} \int_{0}^{t}\left(\frac{\partial^{2} f}{\partial \varepsilon} \frac{\partial \psi}{\partial}\right)_{0} d t_{1}+\int_{i_{0}}^{t} S_{2}\left(t_{1}\right) d t_{1}-A_{2} \quad\left(A_{2}=\text { consl }\right)
$$

where S_{2} is a known periodic function

$$
\begin{aligned}
S_{a}(t)= & \frac{1}{2}\left(\frac{\partial^{2} j}{\partial \varepsilon^{2}}\right)_{0}+\left(\frac{\partial^{2} j}{\partial \varepsilon \partial \kappa}\right)_{0} E_{1}+\left(\frac{\partial^{2} j}{\partial \varepsilon \partial h}\right)_{0} h_{1}+\frac{1}{2}\left(\frac{\partial^{2} f}{\partial t^{2}}\right)_{0} h_{1}^{2}! \\
& +\left(\frac{\partial^{2} j}{\partial \varepsilon \partial \psi}\right)_{0} \int_{i_{0}}^{t}\left[\omega_{0} \int_{t_{0}}^{t_{1}}\left(\frac{\partial f}{\partial \varepsilon}\right)_{0} d t_{2}+\left(\frac{\partial F}{\partial \varepsilon}\right)_{0}+\omega_{0}^{*} A_{1}^{*}\right] d t_{1}
\end{aligned}
$$

Condition of periodicity of E_{2} yields B_{1}

$$
B_{1}^{*}=-\left(\frac{\partial P}{\partial \tau^{*}}\right)^{-1} \int_{0}^{T} S_{2}(t) d t
$$

provided that τ^{*} is a simple, real root of (2.2). This defines the periodic function ψ_{1}. Inserting the latter into the expression for E_{2} and ψ_{2} we find

$$
\begin{gathered}
A_{2}^{*}=-\left(\omega_{0}^{*} T\right)^{-1} \int_{0}^{T}\left\{\omega_{0}^{\prime} \int_{t_{0}}^{t}\left[B_{2}^{*}\left(\frac{\partial^{2} f}{\partial \varepsilon \partial \psi}\right)_{0}+S_{3}\right] d t_{1}+\frac{1}{2} \omega_{0}^{*} E_{1^{2}}+\right. \\
\left.+\frac{1}{2}\left(\frac{\partial^{2} F}{\partial \varepsilon^{2}}\right)_{0}+\left(\frac{\partial^{2} F}{\partial \varepsilon \partial E}\right)_{0} E_{1}+\left(\frac{\partial^{2} F}{\partial \varepsilon \partial \psi}\right)_{0} \psi_{1}+\left(\frac{\partial^{2} F}{\partial \varepsilon \partial h}\right)_{0} h_{1}-\frac{1}{2}\left(\frac{\partial^{2} F}{\partial /_{2}^{2}}\right)_{0} h_{1}^{2}\right\} d t
\end{gathered}
$$

Thus the periodic functions E_{2} and h_{2} can be fully determined from the second approximation system, while

$$
\begin{aligned}
\psi_{2} & =\int_{t_{0}}^{t}\left[\omega_{0}^{\prime} E_{2}+\frac{1}{2} \omega_{0}^{2} E_{1}^{3}+\frac{1}{2}\left(\frac{\partial^{3} F}{\partial \varepsilon^{3}}\right)_{0}+\left(\frac{\partial^{3} F}{\partial \varepsilon \partial E^{2}}\right)_{0} E_{1}+\right. \\
& \left.+\left(\frac{\partial^{3} F}{\partial \varepsilon \partial \psi}\right)_{0} \psi_{1}+\left(\frac{\partial^{2} F}{\partial \varepsilon \partial n}\right)_{0} h_{1}+\frac{1}{2}\left(\frac{\partial^{2} F}{\partial n^{3}}\right)_{0} h_{2}^{2}\right] \cdot d t_{1}+B_{2} .
\end{aligned}
$$

The constant of integration B_{2} appearing in this expression is obtained from the condition of periodicity of E_{3} etc.

We can find in this manner the corrections of any order and prove by induction that the method yields any required number of bounded periodic coefficients of the series (2.1). This means that we can obtain a resonant solution which will be unique within the domain of definition and analyticity of the systera (1.5) up to any degree of accuracy in ε for all $t \in[t, \infty)$.

Note 2.1. A steady resonant solution of (1.5) can be constructed using consecutive approximations with the help of the following system

$$
\begin{gathered}
\frac{d x_{i}}{d t}=\left(\frac{\partial f}{\partial \varepsilon}\right)_{0}+\varepsilon\left[\frac{1}{2}\left(\frac{\partial^{2} f}{\partial \varepsilon^{2}}\right)_{0}+\left(\frac{\partial^{3} f}{\partial \varepsilon} \partial E\right)_{0} x_{i-1}+\left(\frac{\partial^{2} f}{\partial \varepsilon \partial \psi}\right)_{0} y_{i-1}+\right. \\
\left.+\left(\frac{\partial^{2} f}{\partial \varepsilon \partial h}\right)_{0} z_{i-1}+\frac{1}{2}\left(\frac{\partial^{3} f}{\partial h^{2}}\right)_{0} z_{i-1}^{2}+X\left(t, x_{i-1}, y_{i-1}, z_{i-1}, \varepsilon\right)\right] \\
\frac{d y_{i}}{d t}=\omega_{0}^{0} x_{i}+\left(\frac{\partial F}{\partial \varepsilon}\right)_{0}+\varepsilon\left[\frac{1}{2} \omega_{0}{ }^{n} x_{i-1}^{2}+\frac{1}{2}\left(\frac{\partial^{2} F}{\partial \varepsilon^{2}}\right)_{0}+\left(\frac{\partial^{2} F}{\partial \varepsilon \partial E}\right)_{0} x_{i-1}+\right. \\
\left.+\left(\frac{\partial^{2} F}{\partial \varepsilon \partial \psi}\right)_{0} y_{i-1}+\left(\frac{\partial^{2} F}{\partial \varepsilon \partial h}\right)_{0} z_{i-1}+\frac{1}{2}\left(\frac{\partial^{2} F}{\partial h^{3}}\right)_{0} z_{i-1}^{2}+Y\left(t, x_{i-1}, y_{i-1}, z_{i-1}, \varepsilon\right)\right] \\
\frac{d z_{i}}{d t}=I I_{0} z_{i}+\left(\frac{\partial g}{\partial \varepsilon}\right)_{0}+\varepsilon\left[\frac{1}{2}\left(\frac{\partial^{2} g}{\partial \varepsilon^{2}}\right)_{0}+\left(\frac{\partial^{2} g}{\partial \varepsilon \partial E}\right)_{0} x_{i-1}+\left(\frac{\partial^{2} g}{\partial \varepsilon \partial \psi}\right)_{0} y_{i-1}+\left(\frac{\partial^{2} g}{\partial \varepsilon \partial h}\right)_{0} z_{i-1}+\right. \\
\left.+\frac{1}{2}\left(\frac{\partial^{2} g}{\partial h^{3}}\right)_{0} z_{i-1}^{3}+\left(\frac{\partial H}{\partial E}\right)_{0} x_{i-1} z_{i-1}+Z\left(t, x_{i-1}, y_{i-1}, z_{i-1}, \varepsilon\right)\right]
\end{gathered}
$$

Here X, Y and Z are known, sufficiently smooth fanctions. Proof of the convergence of consecutive approximations i.e. of the convergence of the functions x_{i}, y_{t} and x_{i} to T-periodic functions appearing in the following substitation

$$
\begin{equation*}
E=E_{0}^{*}+\varepsilon x, \quad \psi=(l / m) v\left(t-t_{0}\right)+\tau+\varepsilon y, \quad h=\varepsilon z \tag{2.3}
\end{equation*}
$$

is given in [4], therefore we consider the use of the proposed system justified. It should be noted that the method of consecutive approximations can be applied to systems of the type (1.5), if the functions f, ω, F and g posses first and second order partial derivatives with respect to ε, E, ψ and h satisfying, together with $d H / d E$ the Lipshits conditions with t independent constants in some region

$$
\varepsilon \in\left[0, \varepsilon_{0}\right], \quad-\alpha \leqslant E-E_{0}^{*} \leqslant \alpha, \psi \in(-\infty, \infty),|h| \leqslant \sigma
$$

The result obtained can be formulated briefly as follows:
Theorem 2.1. If

1) functions f, ω, F, H and g are sufficiently smooth and satisfy the conditions listed in Section 1;
2) equations(2.2) has a real root τ^{*} and
3) the inequality

$$
\omega^{\prime}\left(E_{0}^{*}\right) \partial P / \partial \tau^{*} \neq 0
$$

holds, then provided that $|\varepsilon|$ is sufficiently small, the perturbed system (1.5) has a unique steady resonant solution belonging to the domain of definition and amoothneas of the functions f, ω, F, H and g. When $\varepsilon=0$, this solation is

$$
E=E_{0}{ }^{*}=\text { const }, \quad \psi=(l / m) \vee\left(t-t_{0}\right)+\tau^{*}, \quad h=0
$$

Note 2.2. When we say "the uniqueness of the solution" we mean, that a single solution of the type (2.3) correaponds to a fixed set of values of $m, l, E_{0}{ }^{*}$ and τ^{*}. It can be easily be shown that Eq. (2.2) admits, on the segment of length 2π, andeven number of real roots T^{*}.

Critical cases are posaible, when the condition (3) of the Theorem does not hold.
No te 2.3. Let T^{*} be a real, r-taple ($r \geq 2$) root of (2.2), but let $\omega_{0}^{\prime} \neq 0$. In this case the uniqueness of the solution as defined above, may be violated. In general, we can represent the steady resonant solution in the form of a series in fractional powers of a amall parameter. Integration constants of the type B_{i} can be found from nonlinear algebraic equations. Investigation of the generalized case is difficult and demands the use of subtle and involved reaults of the theory of implicit analytic functions. The pattern of spliting of the integral curves appears, in this case, to be very complex.

N o te 2.4. The case when (2.2) is satisfied identically for some m and l, is fairly often met in practice. We then speak of higher order motions. Malkin in [4] indicated the possibility of occurrence of such cases for the oscillatory nonlinear systems, while investigating the periodic solution by Poincare's method. He also investigated an analogous particular case for a quasilinear resonant system. Periodic resonant motions of the first, second and third order are obtained in [5] for a nonlinear analytic system with one degree of freedom and their Liapunov stability is investigated. Analogons rotational problem was dealt with in [6].

We should note that this critical case is of considerable theoretical and practical inter* eat when applied to the general system (1.1) and should be studied in detail.

Note 2.5. Critical cases occurring when $\omega_{0}^{\prime}=0$ are of practical interest, provided that ω is independent of E, i.e. provided that the system is quasilinear. Real constants $E_{0}{ }^{*}$ and τ^{*} defining the steady mode can then be obtained from

$$
P\left(E_{0}, \tau\right) \equiv \int_{0}^{T}\left(\frac{\partial}{\partial \varepsilon}\right)_{0} d t=0, \quad Q\left(E_{0}, \tau\right) \equiv \int_{0}^{T}\left(\frac{\partial F}{\partial \varepsilon}\right)_{0} d t=0
$$

while the condition (3) of Theorem 2.1 assumes the form

$$
\begin{equation*}
\partial(P, Q) / \partial\left(E_{0}^{*}, \mathrm{r}^{*}\right) \neq 0 \tag{2.4}
\end{equation*}
$$

If, on the other hand, ω is dependent on E but $\omega_{0}^{\prime} \neq 0$, then the uniqueness of may be violated for some specified set of m and l. We call such a case an exceptional one when dealing with nonlinear motions. Obviously, we can always achieve the condition $\omega_{0}{ }^{\prime} \neq 0$ by varying m and l.
3. Investigation of stability of the perturbed resonant solution.

We shall use the substitution

$$
E=E(t, \varepsilon)+U, \quad \psi=\psi(t, \varepsilon)+V, \quad h=h(t, \varepsilon)+W
$$

to construct the following variational equations

$$
\begin{gathered}
\frac{d U}{d t}=\frac{\partial t}{\partial E} U+\frac{\partial l}{\partial \psi} V+\frac{\partial f}{\partial t} W+1(t, U, V, W, \varepsilon) \\
\frac{d V}{d t}=\left(\omega^{\prime}+\frac{\partial F}{\partial E}\right) U+\frac{\partial F}{\partial \psi} V+\frac{\partial F}{\partial h} W+F_{1}(t, U, V, W, \varepsilon) \\
\frac{d V}{d t}=\left(H^{\prime} z+\frac{\partial g}{\partial E}\right) U+\frac{\partial g}{\partial \psi} V+\left(H+\frac{\partial g}{\partial t}\right) W+g_{1}(t, U, V, W, \varepsilon)
\end{gathered}
$$

Here the functions f_{1}, F_{1} and g_{1} are periodic in t, and the first terms of their expansions in U, V and W are quadratic. The well-known Liapunov's theorem [4] implies that it is sufficient to investigate the stability of the staguation point of the linear approximating system.

When $\varepsilon=0$, we see that $(n-2)$ characteristic indices of the variational system have negative real parts, while two remaining indices have both, real and imaginary parts, equal to zero. These two indices have a single corresponding group of solutions. In this case the expansion of the critical characteristic indices will be in the powers of $\delta=\sqrt{\varepsilon}$. One of the solutions of the variational system has the form

$$
U=u \exp \gamma^{t}, \quad V=v \exp \gamma_{t}, \quad W=v \exp \gamma^{t}
$$

wherey y is the critical characteristic index, while u, v and w are periodic fanctions of t_{0} Moreover,

$$
\gamma=\sum_{i=1}^{\infty} \delta^{i} \gamma_{i}, \quad u=\sum_{i=0}^{\infty} \delta^{i} u_{i}, \quad r=\sum_{i=0}^{\infty} \delta^{i} v_{i}, \quad v=\sum_{i=0}^{\infty} \delta^{i} v_{i}
$$

i.e. the functions u_{i}, v_{i} and $w_{i}(i \geq 0)$ should also be T-periodic. Taking this into account we obtain, from the conditions of periodicity of $u_{0}, v_{0}, w_{0}, u_{1}, v_{1}, w_{1}$ and μ_{2}, the following relation for γ_{1}

$$
\gamma_{1}^{2}=\omega^{\prime}\left(E_{0}^{*}\right) \partial P / \partial \tau^{*}
$$

Thus, when $y_{1}{ }^{2}>0$, the perturbed solution is unstable for $t ¥ t_{0}$; if, on the other hand, $y_{1}{ }^{2}<0$, then its stability depends on the sign of γ_{2} which can be found from the conditions of periodicity of the functions v_{1}, w_{2} and $u_{3^{\prime}}$ and is

$$
\tau_{3}=\frac{1}{2 T} \int_{0}^{T}\left[\left(\frac{\partial^{2} f}{\partial \varepsilon \partial E}\right)_{0}+\left(\frac{\partial^{2} F}{\partial \varepsilon \partial \psi}\right)_{0}\right] d t
$$

As a result, we have the following expression for both critical characteristic indices

$$
\gamma= \pm \delta\left(\omega_{0}^{\prime} \partial P / \partial \tau^{*}\right)^{1 / 2}+\delta^{2} \gamma_{2}+O\left(\delta^{2}\right)
$$

which yields, at sufficiently small $\varepsilon>0$, the following theorem.
Theorem 3.1. The constructed perturbed resonant solution (2.3) is Liapunov stable as well as asymptotically stable for $t \geq t_{0}$, provided that

$$
\omega^{\prime}\left(E_{0}^{*}\right) \frac{\partial P}{\partial \tau^{*}}<0, \quad \int_{0}^{T}\left[\left(\frac{\partial^{2} j}{\partial \varepsilon \partial E}\right)_{0}+\left(\frac{\partial^{2} F}{\partial \varepsilon \partial \psi}\right)_{0}\right] d t<0
$$

and unstable otherwise.
Note 3.1. Theorem 2.1 excludes the case $y_{1}=0$, i.e. the first condition is the necessary one. If $\boldsymbol{\gamma}_{2}=0$, then higher powers of δ must be taken into account (computation of γ_{3} etc.) to obtain the sufficient conditions of stability.

N ote 3.2. When $\omega=$ const, the resonaqt solution will be apymptotically stable if the eigenvalues of the matrix (2.4) have negative real parts (see Note 2.5).

In conclusion we shall consider a specific example taken from mechanica.
4. Example. We consider a mechanical model representing a system with two degrees

Fig. 1 of freedom in the gravity field (Fig. 1). We assume that the model is fixed to a rigid support at two points, and that the forces acting at these points on the plane annulus consist of a recurrent elastic moment and a frictional moment proportional to the angular velocity By constructing a Lagrangian for this system with the perturbation forces taken into account and performing the relevant differentiation, we can obtain the system
$m a^{2} \theta^{\circ}-m a^{2} \sin \theta \cos \theta f^{\prime 2}+m g a \sin \theta=-a_{1} \theta^{\circ}+f_{1}(v t)$
$I \varphi^{\bullet}+m a^{2} \sin \dot{\theta} \dot{\varphi} \varphi^{\bullet}+2 m a^{2} \sin 0 \cos 00 \varphi^{*}+k_{1}{ }^{2} \varphi=-$

$$
-\alpha_{1} \sin ^{2} \theta \varphi \varphi^{*}-\lambda_{1} \varphi^{*}-z_{1}(\varphi)+g_{1}(v t)
$$

Here I denotes the moment of inertia of the ring relative to the $0^{\prime} 0 O^{\prime \prime}$-axis, a_{1} is the coefficient of viecous friction between the ball and the outer medium, f_{1} and g_{1} are the external periodic moments and z_{1} is a function in which the nonlinear effecta of the elaztic moment are taken into account. Using the notation

$$
\frac{m a^{2}}{I}=\varepsilon, \quad \frac{\alpha_{1}}{m a^{3}}=\varepsilon x, \quad \frac{f_{1}(v t)}{m n^{2}}=\varepsilon f(v t), \quad \frac{k_{1}^{3}}{I}=k^{3}
$$

$$
\frac{z_{1}(\varphi)}{I}=\varepsilon \varepsilon(\varphi), \quad \frac{\lambda_{1}}{I}=\lambda, \quad \frac{\alpha_{1}}{I}=e^{n} x, \quad \frac{g_{1}(v t)}{I}=\varepsilon_{\delta}(v t)
$$

we can obtain a system of the type (1.1)

$$
\theta^{\prime \prime}-\sin \theta \cos \theta \varphi^{-2}+(g / a)_{4} \sin \theta=\varepsilon[f(v l)-a \theta]
$$

$$
\begin{align*}
\varphi^{*}+\lambda \varphi^{*}+k^{2} \varphi=\varepsilon(1 & \left.+\varepsilon \sin ^{2} \theta\right)^{-1}\left[g(\nu t)+k^{2} \varphi \sin ^{2} \theta+(\lambda-\alpha) \varphi \sin ^{2} \theta-\right. \\
& \left.-2 \theta^{*} \varphi \sin \theta \cos \theta-z(\varphi)\right] \tag{4.1}
\end{align*}
$$

We shall, for definiteness, consider the case

$$
f(v t) \equiv f_{0} \sin v t, \quad g(v t) \equiv g_{0} \sin (v t+\delta), \quad z(\varphi) \equiv \sigma \varphi^{3}
$$

When $\varepsilon=0$, the system (4.1) admits a two-parameter family of periodic

$$
\begin{aligned}
& \theta_{0}=2 \arcsin \left(\gamma_{1} \operatorname{sn}\left[2 \sqrt{g / a}(t+\tau), \gamma_{1}\right]\right), \quad \varphi_{0}=0 \\
& \left(\gamma_{1}=\sqrt{a E_{0}!2 g}, \quad T_{0}\left(E_{0}\right)=2 \sqrt{a / g} K\left(\gamma_{1}\right), \gamma_{1}<1\right)
\end{aligned}
$$

or rotational-oscillatory

$$
\begin{gathered}
\theta_{0}=2 \mathrm{am}\left[\sqrt{E_{0} / 2}(t+\tau), \quad \gamma_{2}\right]=\omega\left(E_{0}\right)(t+\tau)+4 \sum_{j=1}^{\infty} \frac{1}{i} \frac{q^{j}}{1+q^{2 j}} \sin j \omega\left(E_{0}\right)(t+\tau) \\
\varphi_{0}=0 \quad\left(\gamma_{2}=1 / \gamma_{1}<1, \quad T_{0}\left(E_{0}\right)=2 \sqrt{2 / E_{0}} K^{\prime}\left(\gamma_{2}\right), q=\exp -\pi K^{\prime} / K\right)
\end{gathered}
$$

solations. Here K denotes a complete elliptic integral of the first kind taken over the cor responding moduli, while E_{0} and τ are constants of integration. In the following we shall limit ourselves to the rotational-oscillatory solations. Using the substitution

$$
\theta=\theta_{0}(\psi, E), \quad \theta^{\circ}=\theta_{0}^{\circ}(\psi, E), \quad h_{1}=\varphi, \quad h_{2}=\varphi^{\circ}
$$

we can obtain the following system of the type (1.5):

$$
d E / d l=\varepsilon 0_{0} \cdot\left(/_{0} \sin v t-\alpha 0_{0}{ }^{\circ}\right)+\theta_{0}{ }^{\circ} \sin 0_{u} \cos \theta_{0} h_{2}{ }^{2}
$$

$$
d \varphi / d t=\sqrt{E / 2} \pi / K\left(\gamma_{0}\right)+\theta_{0}\left[\varepsilon\left(/_{0} \sin \nu t-\alpha \theta_{0}\right)++_{0}^{*} \sin \theta_{0} \cos 0_{0} h_{2}^{2}\right] \times
$$

$$
\times \int_{0}^{\theta}\left\{\omega_{0}^{\prime}[2 E-2 g / a(1-\cos x)]^{-1 / 2}-\omega_{0}[2 E-2 g / a(1-\cos x)]^{-2 / 2}\right\} d x
$$

$$
d h_{1} / d t=h_{2}, \quad d h_{2} / d t=-k^{2} h_{1}-\lambda h_{2}+\varepsilon\left(1+\varepsilon \sin ^{2} \theta_{0}\right)^{-1} \times
$$

$$
\cdots \times\left[g_{0} \sin (v l-+\delta)+\left(k^{2} / h_{1}+(\lambda-x) h_{2}\right) \sin ^{3} \theta_{0}-h_{2} \theta_{0} \sin 2 \theta_{0}-\sigma h_{1}{ }^{3}\right]
$$

and apply to it the method developed in Sections 2 and 3.
We can, however, investigate the system (4.1) directly. Substituting into it the series

$$
\theta=0_{0}\left(\psi_{0}, E_{0}\right)+\varepsilon \theta_{1}(t)+\ldots, \quad \varphi=\varepsilon \varphi_{1}(t)+\varepsilon^{2} \varphi_{2}(t)+\ldots
$$

and comparing the coefficients of like powers of ε we obtain, in particular,

$$
\begin{gathered}
\theta_{1}{ }^{\prime \prime}+(g / a) \theta_{1} \cos \theta_{0}\left(\psi_{0}, E_{0}\right)=f_{0} \sin v t \cdots \alpha \theta_{0}\left(\psi_{0}, E_{u}\right) \\
\varphi_{1}{ }^{\prime \prime}+\lambda \varphi_{1}+k^{*} \varphi_{1}=g_{0} \sin (v t+\delta)
\end{gathered}
$$

Periodic solution of this linear system can be obtained in its explicit form using the method of variation of the integration constants

$$
\begin{aligned}
\theta_{1}=M_{1} \theta_{0} \cdot & +\frac{1}{\Delta}\left\{\theta_{0} \cdot \int_{0}^{t}\left[\int_{0}^{t_{1}}\left(f_{0} \sin v t_{2}-\alpha \theta_{0}\right) \theta_{0} \cdot d t_{2}-\omega_{0} \frac{\partial 0_{0}}{\partial \omega_{0}}\left(f_{0} \sin v t_{1}-\alpha 0_{0}\right)-N_{1}\right] d t_{1}+\right. \\
& \left.+\omega_{0} \frac{\partial \theta_{0}}{\partial \omega_{0}}\left[\int_{0}^{t}\left(f_{0} \sin v t_{1}-\alpha 0_{0} \cdot\right) \theta_{0} \cdot d t_{1}-N_{1}\right]\right\} \equiv M_{1} \theta_{0}^{*}+\theta_{1}^{*} \\
N_{1}= & \frac{1}{T} \int_{0}^{T}\left[\int_{0}^{t}\left(f_{0} \sin v t_{1}-\alpha \theta_{0}\right) \theta_{0} \cdot d t_{1}-\omega_{0} \frac{\partial 0_{0}}{\partial \omega_{0}}\left(f_{0} \sin v t-\alpha 0_{0} 0^{\circ}\right)\right] d t \\
\varphi_{1}= & {\left[g_{0}\left(k^{2}-v^{2}\right) \sin (v t+\delta)-\sigma_{0} \lambda v \cos (v t+\delta)\right],\left(\left(k^{*} \cdots v^{n}\right)^{2} \cdot(\lambda v)^{2}\right] }
\end{aligned}
$$

Here H_{1} and N_{1} are constants of integration, while $\Delta=\Delta(0)$ is a Wronskian for the Eq.

$$
x^{\ddot{\prime}+(g / a) \cos _{0} \theta_{0} x=0 \quad\left(x_{1}=0_{0}^{*}, \quad x_{2}=\theta_{0} t+\omega_{0} \partial 0_{0} / \partial \omega_{0}\right), ~\left(t_{0}\right)}
$$

where the brackets contain its basic system of solutions. For simplicity we shall only consider the resonance of the form $m: 1$. Then the equation of phase equilibrium can be written as

$$
P(\tau) \equiv-\frac{4 \pi m}{v} \frac{q^{m}}{1+q^{2 m}} \cdot \sin v \tau-\frac{8 \alpha v}{\pi m} \frac{G\left(\gamma_{2}\right)}{K\left(\gamma_{2}\right)}=0
$$

where G denotes a complete elliptic integral of the second kind. This equation admits the following real roots

$$
\beta=2 v^{2} \alpha G\left(\gamma_{2}\right)\left(1+q^{2 m}\right) / \pi^{2} m^{2} K\left(\ddots_{2}\right) q^{m} \leqslant 1
$$

provided that the inequality

$$
\tau_{1}=-(1 / v) \arcsin \beta, \quad \tau_{2}=(1 / v)(\pi+\operatorname{arc} \sin \beta)(\bmod 2 \pi)
$$

holds. If $B<1$ (the case $R=1$ is a critical one) we have $A P / A T^{*} \neq 0$ and by Theorem 2.1 there exists a solution of the perturbed system provided that ε is sufficiently small. In particular, Expressions

$$
\left.\theta=0_{0}+\varepsilon\left(M_{1}^{*} \theta_{0}+\theta_{1}^{*}\right)+O\left(\varepsilon^{2}\right), \quad \varphi=\varepsilon q_{1}(t)+\varepsilon \varphi_{2}(t)+O\left(\varepsilon^{3}\right)\right]
$$

hold for $t \in[0, \infty)$. Here we use the following notation

$$
\begin{aligned}
M_{1}^{*}= & \left(\frac{\partial P}{\partial \mathrm{~T}^{*}}\right)^{-1} \int_{0}^{T}\left(2 \alpha 0_{1}^{*}-0_{1}^{*} f_{0} \sin v t-\frac{1}{2} \sin 2 \theta_{0} \varphi_{2}^{2}\right) \theta_{0}^{*} d t \\
\varphi_{2}(t) & =\frac{1}{p_{1}-p_{2}} \int_{-\infty}^{t}\left[e^{p_{1}\left(t-t_{1}\right)}-e^{p_{2}\left(t-t_{1}\right)}\right]\left\{-\theta_{1} \varphi_{1} \sin 2 \theta_{0}+\right. \\
& \left.+\sin ^{2} \theta_{0}\left[(\lambda-\alpha) \varphi_{1}+k^{2} \varphi_{1}-g_{0} \sin \left(v t_{1}+\delta\right)\right]\right\} d t_{1}
\end{aligned}
$$

$$
\left(p_{1,2}=-\lambda / 2+\sqrt{\lambda^{2} / 4-k^{2}}, \quad \partial P / \partial \tau^{*}=\mp 4 \pi m q^{m} \sqrt{1-\beta^{2}} /\left(1+q^{2 m}\right)\right)
$$

Moreover, by Theorem 3.1 we can establish that the perturbed solution is asymptotically stable for $\tau^{*}=\tau_{1}$, provided that $\alpha>0$.

BIBLIOGRAPHY

1. Volosov, V.M., Process of averaging in systems of ordinary differential equations. Usp. mat, nauk, Vol. 17, No. 6, 1962.
2. Bogoliubov, N.N. and Mitropol'skii, lu.A., Asymptotic Methods in the Theory of Nonlinear Oscillations. Me, 3rd ed. Fizmatgiz, 1963.
3. Lykova, O.B.s Behavior of solutions of a system of differential equations at the vicinity of closed orbits. Hkr. matam. zh., Vol. 9, No. 4, 1957.
4. Malkin, I.G., Some Problems in the Theory of Nonlinear Oscillations. M., Gostekhizdat, 1956.
5. Kats, A.M., Forced oscillations of nonlinear systems with one degree of freedom. PMM Vol. 19, No. 1, 1955.
6. Akulenko, L.D. and Volosov, V.M., Higher order resonant rotations. Vestn. Mosk. Univ. Matematike, mekhanika, No. 2, 1967.
